Mixture Model-based Minimum Bayes Risk Decoding using Multiple Machine Translation Systems
نویسندگان
چکیده
We present Mixture Model-based Minimum Bayes Risk (MMMBR) decoding, an approach that makes use of multiple SMT systems to improve translation accuracy. Unlike existing MBR decoding methods defined on the basis of single SMT systems, an MMMBR decoder reranks translation outputs in the combined search space of multiple systems using the MBR decision rule and a mixture distribution of component SMT models for translation hypotheses. MMMBR decoding is a general method that is independent of specific SMT models and can be applied to various commonly used search spaces. Experimental results on the NIST Chinese-to-English MT evaluation tasks show that our approach brings significant improvements to single system-based MBR decoding and outperforms a stateof-the-art system combination method. 1
منابع مشابه
Generalized Minimum Bayes Risk System Combination
Minimum Bayes Risk (MBR) has been used as a decision rule for both singlesystem decoding and system combination in machine translation. For system combination, we argue that common MBR implementations are actually not correct, since probabilities in the hypothesis space cannot be reliably estimated. These implementations achieve the effect of consensus decoding (which may be beneficial in its o...
متن کاملImproving the Minimum Bayes’ Risk Combination of Machine Translation Systems
We investigate the problem of combining the outputs of different translation systems into a minimum Bayes’ risk consensus translation. We explore different risk formulations based on the BLEU score, and provide a dynamic programming decoding algorithm for each of them. In our experiments, these algorithms generated consensus translations with better risk, and more efficiently, than previous pro...
متن کاملEfficient Path Counting Transducers for Minimum Bayes-Risk Decoding of Statistical Machine Translation Lattices
This paper presents an efficient implementation of linearised lattice minimum Bayes-risk decoding using weighted finite state transducers. We introduce transducers to efficiently count lattice paths containing n-grams and use these to gather the required statistics. We show that these procedures can be implemented exactly through simple transformations of word sequences to sequences of n-grams....
متن کاملLattice Minimum Bayes-Risk Decoding for Statistical Machine Translation
We present Minimum Bayes-Risk (MBR) decoding over translation lattices that compactly encode a huge number of translation hypotheses. We describe conditions on the loss function that will enable efficient implementation of MBR decoders on lattices. We introduce an approximation to the BLEU score (Papineni et al., 2001) that satisfies these conditions. The MBR decoding under this approximate BLE...
متن کاملEfficient Minimum Error Rate Training and Minimum Bayes-Risk Decoding for Translation Hypergraphs and Lattices
Minimum Error Rate Training (MERT) and Minimum Bayes-Risk (MBR) decoding are used in most current state-of-theart Statistical Machine Translation (SMT) systems. The algorithms were originally developed to work with N -best lists of translations, and recently extended to lattices that encode many more hypotheses than typical N -best lists. We here extend lattice-based MERT and MBR algorithms to ...
متن کامل